graph TD; MLArchitecture-->Classic; MLArchitecture-->ComputerVision; MLArchitecture-->NLP; Infra-Deployment-->Bicep; Infra-Deployment-->Terraform; Infra-Deployment-->CLI;
Deploying your modelling code into production with Microsoft Azure
Wave Data Labs
Source: Kreuzberger (2023)
Source: CRISP-DM
Inner Loop
graph TD; MLArchitecture-->Classic; MLArchitecture-->ComputerVision; MLArchitecture-->NLP; Infra-Deployment-->Bicep; Infra-Deployment-->Terraform; Infra-Deployment-->CLI;
graph TD; Orchestration-->AzureDevOps; Orchestration-->Github; MlOpsCode-->Python-SDK; MlOpsCode-->Azure-CLI-v2;
Not really important, just a quick example.
TARGET_COL = "cost"
NUMERIC_COLS = [
"distance",
"dropoff_latitude",
"dropoff_longitude",
"passengers",
"pickup_latitude",
"pickup_longitude",
"pickup_weekday",
"pickup_month",
"pickup_monthday",
"pickup_hour",
"pickup_minute",
"pickup_second",
"dropoff_weekday",
"dropoff_month",
"dropoff_monthday",
"dropoff_hour",
"dropoff_minute",
"dropoff_second",
]
CAT_NOM_COLS = [
"store_forward",
"vendor",
]
graph TB subgraph id1 [Monolithic Notebook] a1[Load Dependencies]-->a2[Data Prep]-->a3[Test/Train Split]-->a4[Train Model]-->a5[Evaluate Model]-->a6[Diagnostics] end a7[(Data)]-->a2 style id1 fill:lightblue;
graph LR a1[[Data Prep]]-->a2[[Model Training]]-->a3[[Evaluation]]-->a4[[Unit Tests]]
graph TB b1[[Infrastructure Deploy]] a1[[Data Prep]]-->a2[[Model Training]]-->a3[[Evaluation]]-->a4[[Unit Tests]] e1[[Deploy REST API Endpoint]] style b1 fill:red style e1 fill:red
flowchart LR subgraph p1[Infra Deploy Pipeline] b1[[Infrastructure Deploy]] end subgraph p2[Model Training Pipeline] a1[[Data Prep]]-->a2[[Model Training]]-->a3[[Evaluation]]-->a4[[Unit Tests]] end subgraph p3[Endpoint Deployment Pipeline] e1[[Deploy REST API Endpoint]] end p1 --> p2 p2-->p3 style p1 fill:lightblue; style p2 fill:lightblue; style p3 fill:lightblue;
flowchart LR s1[[config.yml]]-->b2 subgraph p1[Infra Deploy Pipeline] direction TB b1[[install az cli]]-->b2[[create resource group]]-->b3[[create workspace]]-->b4[[create compute]] end a7[[environment.yaml]]-->a6 a9[(Data)]-->a8 subgraph p2[Model Training Pipeline] direction TB a6[[register environment]]-->a8[[register data]]-->a1[[Data Prep]]-->a2[[Model Training]]-->a3[[Evaluation]]-->a4[[Register Model]] end subgraph p3[Endpoint Deployment Pipeline] direction TB e1[[Create REST Online endpoint]]-->e2[[Deploy Model to enpoint]]-->e3[[test endpoint]] end p1 --> p2 p2-->p3 style p1 fill:lightblue; style p2 fill:lightblue; style p3 fill:lightblue;
.yml
filesDetailed Instructions at:
More bespoke instructions at:
Azure MLOps (v2) Solution Accelerator
For all resources visit: https://deanmarchiori.github.io/deploywithazure
deanmarchiori
dean@wavedatalabs.com.au