graph TD;
MLArchitecture-->Classic;
MLArchitecture-->ComputerVision;
MLArchitecture-->NLP;
Infra-Deployment-->Bicep;
Infra-Deployment-->Terraform;
Infra-Deployment-->CLI;
Deploying your modelling code into production with Microsoft Azure
Wave Data Labs
Source: Kreuzberger (2023)

Source: Kreuzberger (2023)
Source: Kreuzberger (2023)


Source: CRISP-DM

Inner Loop
graph TD;
MLArchitecture-->Classic;
MLArchitecture-->ComputerVision;
MLArchitecture-->NLP;
Infra-Deployment-->Bicep;
Infra-Deployment-->Terraform;
Infra-Deployment-->CLI;
graph TD;
Orchestration-->AzureDevOps;
Orchestration-->Github;
MlOpsCode-->Python-SDK;
MlOpsCode-->Azure-CLI-v2;
Not really important, just a quick example.
TARGET_COL = "cost"
NUMERIC_COLS = [
"distance",
"dropoff_latitude",
"dropoff_longitude",
"passengers",
"pickup_latitude",
"pickup_longitude",
"pickup_weekday",
"pickup_month",
"pickup_monthday",
"pickup_hour",
"pickup_minute",
"pickup_second",
"dropoff_weekday",
"dropoff_month",
"dropoff_monthday",
"dropoff_hour",
"dropoff_minute",
"dropoff_second",
]
CAT_NOM_COLS = [
"store_forward",
"vendor",
]graph TB
subgraph id1 [Monolithic Notebook]
a1[Load Dependencies]-->a2[Data Prep]-->a3[Test/Train Split]-->a4[Train Model]-->a5[Evaluate Model]-->a6[Diagnostics]
end
a7[(Data)]-->a2
style id1 fill:lightblue;
graph LR a1[[Data Prep]]-->a2[[Model Training]]-->a3[[Evaluation]]-->a4[[Unit Tests]]
graph TB b1[[Infrastructure Deploy]] a1[[Data Prep]]-->a2[[Model Training]]-->a3[[Evaluation]]-->a4[[Unit Tests]] e1[[Deploy REST API Endpoint]] style b1 fill:red style e1 fill:red
flowchart LR subgraph p1[Infra Deploy Pipeline] b1[[Infrastructure Deploy]] end subgraph p2[Model Training Pipeline] a1[[Data Prep]]-->a2[[Model Training]]-->a3[[Evaluation]]-->a4[[Unit Tests]] end subgraph p3[Endpoint Deployment Pipeline] e1[[Deploy REST API Endpoint]] end p1 --> p2 p2-->p3 style p1 fill:lightblue; style p2 fill:lightblue; style p3 fill:lightblue;
flowchart LR
s1[[config.yml]]-->b2
subgraph p1[Infra Deploy Pipeline]
direction TB
b1[[install az cli]]-->b2[[create resource group]]-->b3[[create workspace]]-->b4[[create compute]]
end
a7[[environment.yaml]]-->a6
a9[(Data)]-->a8
subgraph p2[Model Training Pipeline]
direction TB
a6[[register environment]]-->a8[[register data]]-->a1[[Data Prep]]-->a2[[Model Training]]-->a3[[Evaluation]]-->a4[[Register Model]]
end
subgraph p3[Endpoint Deployment Pipeline]
direction TB
e1[[Create REST Online endpoint]]-->e2[[Deploy Model to enpoint]]-->e3[[test endpoint]]
end
p1 --> p2
p2-->p3
style p1 fill:lightblue;
style p2 fill:lightblue;
style p3 fill:lightblue;
.yml filesDetailed Instructions at:
More bespoke instructions at:
Azure MLOps (v2) Solution Accelerator



For all resources visit: https://deanmarchiori.github.io/deploywithazure
deanmarchiori
dean@wavedatalabs.com.au